Expression of Neuronal Nitric Oxide Synthase in Rabbit Carotid Body Glomus Cells Regulates Large-Conductance Ca -Activated Potassium Currents
نویسندگان
چکیده
Li Y-L, Zheng H, Ding Y, Schultz HD. Expression of neuronal nitric oxide synthase in rabbit carotid body glomus cells regulates large-conductance Ca -activated potassium currents. J Neurophysiol 103: 3027–3033, 2010. First published March 31, 2010; doi:10.1152/jn.01138.2009. Our previous studies show that a decrease in endogenous nitric oxide (NO) is involved in the blunted outward K currents in carotid body (CB) glomus cells from chronic heart failure (CHF) rabbits. In the present study, we measured the effects of the neuronal nitric oxide synthase (nNOS) transgene on the K currents in CB glomus cells from pacing-induced CHF rabbits. Using single-cell real-time RT-PCR and immunofluorescent techniques, we found that nNOS mRNA and protein are expressed in the rabbit CB glomus cells and CHF decreased the expression of nNOS mRNA and protein in CB glomus cells. After 3 days of an adenoviral nNOS (Ad.nNOS) gene transfection, the expression of nNOS protein was increased to the level found in sham CB glomus cells. In whole cell patch-clamp experiments, Ad.nNOS markedly reversed the attenuated K currents in CB glomus cells from CHF rabbits. The specific nNOS inhibitor (S-methyl-L-thiocitrulline [SMTC]) and large-conductance Ca -activated K (BK) channel blocker (iberiotoxin) fully abolished the effect of Ad.nNOS on the K currents in the CB glomus cells from CHF rabbits. However, neither CHF nor Ad.nNOS altered the protein expression of BK channel -subunit. These results suggest that a decrease of NO induced by an attenuated nNOS activity lowers the activation of the BK channels but not the protein expression of the BK channel -subunit in the CB glomus cells during CHF.
منابع مشابه
Expression of neuronal nitric oxide synthase in rabbit carotid body glomus cells regulates large-conductance Ca2+-activated potassium currents.
Our previous studies show that a decrease in endogenous nitric oxide (NO) is involved in the blunted outward K(+) currents in carotid body (CB) glomus cells from chronic heart failure (CHF) rabbits. In the present study, we measured the effects of the neuronal nitric oxide synthase (nNOS) transgene on the K(+) currents in CB glomus cells from pacing-induced CHF rabbits. Using single-cell real-t...
متن کاملExpression of neuronal nitric oxide synthase in rabbit carotid body glomus cells
1 Expression of neuronal nitric oxide synthase in rabbit carotid body glomus cells 1 regulates large-conductance Ca-activated potassium currents 2 3 Yu-Long Li, Hong Zheng, Yanfeng Ding, Harold D. Schultz 4 Department of Emergency Medicine and Cellular and Integrative Physiology, 5 University of Nebraska Medical Center, Omaha, Nebraska; 6 7 Short title: neuronal nitric oxide synthase and potass...
متن کاملHERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body.
Direct evidence for a specific K(+) channel underlying the resting membrane potential in glomus cells of the carotid body has been absent. The product of the human ether-a-go-go-related gene (HERG) produces inward rectifier currents that are known to contribute to the resting membrane potential in other neuronal cells. The goal of the present study was to determine whether carotid body glomus c...
متن کاملNitric Oxide Inhibits L-Type Ca Current in Glomus Cells of the Rabbit Carotid Body Via a cGMP-Independent Mechanism
Summers, Beth A., Jeffrey L. Overholt, and Nanduri R. Prabhakar. Nitric oxide inhibits L-type Ca current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J. Neurophysiol. 81: 1449–1457, 1999. Previous studies have shown that nitric oxide (NO) inhibits carotid body sensory activity. To begin to understand the cellular mechanisms associated with the actions of NO in th...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کامل